
1. Introduction

In October of 1999, the directors of the national
metrology institutes of 38 of the member states of the
Metre Convention, signed a document called the Mutual
Recognition Agreement (MRA) [1] dealing with nation-
al measurement standards. The objectives of the MRA
are the establishment of degree of equivalence
of national measurement standards maintained by
the national metrology institutes, the recognition of
calibration and measurement services provided by the
institutes and consequently, the establishment of a secure
technical foundation for wider agreements related
to international trade. The process of achieving these
objectives is through international comparisons of
measurements called Key Comparisons. The overall
coordination of the Key Comparisons is through the
International Bureau for Weights and Measures (BIPM)
under the authority of the International Committee
for Weights and Measures (CIPM). Details of the
agreements can be found on the BIPM website,
http://www.bipm.fr.

There are general guidelines, given in Ref. [2], for the
execution of the Key Comparison experiments, dealing
with the selection of what is to be measured, who is to
participate and how the results are to be disseminated.
There are now Key Comparison experiments being per-
formed in a great variety of disciplines. Some examples
are temperature measurements, gas flow measurements,
responsivity of photodiodes to various wavelengths of
light, sound measurements and many more. Two classes
of Key Comparisons have been defined in Refs. [3, 4]. A
Class 1 Comparison is one where each participant meas-
ures a local standard, or possibly a traveling artifact. In
such an experiment there may be a single quantity that is
being measured (measurand ) if the artifact is stable, but
if not, there may be large systematic laboratory effects
which need to be accounted for in the statistical model
and analysis. Currently, most Key Comparisons belong
to Class 1 and an example is given in Sec. 3. A Class 2
Comparison is one where all laboratories take measure-
ments of a single physical state or property. Thus in a
Class 2 experiment, there is a clearly defined single
measurand.
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In either type of comparison, the laboratories per-
form their measurements and report their results back
to a pilot laboratory. The results from each laboratory
consist of an average of a set of measurements (often
with a small sample size) of the quantity being meas-
ured and the total uncertainty in the measurements. The
calculation of the uncertainty is prescribed in the Guide
to the Expression of Uncertainty in Measurement [5], a
publication of the ISO. The pilot laboratory assembles
all of the data and calculates various measures of agree-
ment among the participating laboratories. The exact
form of the analysis is not prescribed, and there is con-
siderable debate in the metrology community about this
issue. However, it is stated in Ref. [2] that the pilot lab-
oratory writes a report on the key comparison that should
include “proposals for a reference value,” called the Key
Comparison Reference Value (KCRV). The KCRV is
said to be “usually a close approximation to the corre-
sponding SI value.” In a Class 2 Key Comparison, the
KCRV is clearly an estimate of the measurand. Class 1
Key Comparisons may have multiple measurands and
so the interpretation of the KCRV is not straightfor-
ward. To date, there have been numerous proposals for
the calculation of the KCRV. The articles given in Refs.
[6 - 10] present some of the methods and more can be
found in their references. The published methods have
so far been based mostly on frequentist statistical mod-
els, even though, the Guide uses belief-based definition
of probability, and so can be said to be more compati-
ble with Bayesian statistical methods.

This paper proposes fully Bayesian models for Key
Comparison data analysis. It is shown that their
assumptions are compatible with the approach of the
Guide. The models allow for a unified approach to the
analysis of Class 1 Key Comparisons, whether or not
systematic laboratory effects are present. In Sec. 2, the
Guide’s definition of measurement uncertainty is fully
described and a compatible Bayesian mathematical
model for measurement is presented. Sec. 3 contains an
example of a Key Comparison experiment. Sec. 4 gives
the statistical models for Key Comparison data. Sec. 5
presents the analysis for Key Comparisons with a
single and with multiple measurands. Sec. 6 presents
the analysis of the example Key Comparison.
Conclusions follow in Sec. 7.

2. The Measurement Model

The approach to quantification of uncertainty in
measurement, which is now widely used in the physical
sciences, is that presented in the Guide to the

Expression of Uncertainty in Measurement. The basic
idea of the Guide is to approximate a measurement
equation

(1)

where g is a known function, µ denotes the measurand
and θ1,…,θp denote p input quantities (random vari-
ables), by a first order Taylor series about the expected
values of the θi s. The uncertainty in the measurand,
denoted u(µ), is then defined as the standard deviation
of the probability distribution of µ based on this linear
approximation, that is

(2)

where the ci are the partial derivatives of µ with respect
to θi, var denotes the variance, and cov denotes the
covariance. The Guide uses an interpretation of proba-
bility consistent with the Bayesian paradigm, that is,
probability distributions of the θi and µ summarize our
knowledge about these quantities. The expected values
and variances of the θi may be based on actual physical
measurements or on other information such as expert
opinion. The Guide defines two types of uncertainty
evaluations. Type A is “by the statistical analysis of
series of observations” and this has usually been inter-
preted as “using sample standard deviations.” Type B is
by “other means” and this has usually meant using
manufacturer specifications, expert knowledge or even
data from additional experiments. An example of a
Type B evaluated uncertainty is the uncertainty in the
internal volume of a 100 ml flask being used in a chem-
istry experiment. Here, the manufacturer may give a
volume of 100 ml ± 0.1 ml. This could be interpreted as
the volume having a rectangular distribution on the
interval (99.9 ml, 100.1 ml), that is, having a standard
deviation of 0.058. A key idea is that the data from the
present experiment is not informative about sources of
uncertainty evaluated by Type B methods. Such uncer-
tainty is due to systematic effects that influence all of
the observations in the experiment, such as for exam-
ple, a flask not really having a volume of 100 ml.

The most common analysis of a metrology experi-
ment estimates the expected value of µ by y, the output
of the measurement equation

(3)

where p = r + s, r of the input quantities having physi-
cal measurements and s of the input quantities being
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based on other information. The xi represent sample
means of the measurements used to estimate θi, λ i rep-
resent the subjective evaluations of the means of the
remaining input quantities. The u(µ) is approximated as
u(y) as follows. The variances of the frequency-based
distributions of the r sample means are usually used for
the corresponding variances in Eq. (2). Subjective eval-
uations are used for the variances of the remaining θi’s.
The usual interpretation of the y and the u(y) is as the
mean and standard deviation of a probability distribu-
tion of the measurand. From a statistical perspective,
this usage represents methodology that is neither total-
ly frequentist nor totally Bayesian, but can be viewed
as an approximate solution to a Bayesian inference
problem. For further discussion of this subject see Refs.
[11, 12].

In the analysis of Key Comparison experiments, the
pilot laboratory receives the values y and the uncertain-
ties u(y) from all of the participants. Generally, the par-
ticipants can also provide an estimate of the repeatabil-
ity component of the uncertainty. Even though, it is
understood that y and u(y) are features of a probability
distribution for a measurand, no information about the
shape of this distribution is provided. For a single lab-
oratory, the following Bayesian statistical model gives
results consistent with the Guide’s measurement model,
and has the added benefit of being easily extended to
accomplish the KCRV estimation

(4)

The notation rep-
resents conditioning. That is, the probability distribu-
tion of Y, given θ and σ 2, is f(Y |θ,σ 2) which is a
Gaussian (Normal) distribution with mean θ and vari-
ance σ 2. The participant’s inputs are a sample mean y,
a sample standard deviation s2 (an estimate of σ 2) and
the remaining uncertainty τ 2. In this model, stage one
in the hierarchy is used to quantify the usual sampling
variability of y, that is, the uncertainty component due
to repeatability. Stage two represents the remaining
uncertainty, both that evaluated by Type A and Type B
methods. Stage three is a prior distribution of the
measurand µ. Normal distributions are used in this
article but other forms of probability distributions can
easily be substituted when appropriate. Generally, a
non-informative stage three prior distribution on µ
would be used, that is, allow ω2 → ∞. Application of
Bayes Theorem

leads to a posterior distribution for µ

(5)

In the above model the variance σ 2 is assumed to be
a known quantity. As this is generally not true, σ 2

would be estimated by the sample variance s 2. When τ 2

dominates σ 2, as is often the case in high precision
physical measurements, or when the sample size on
which s 2 is based is large, the posterior distribution of
µ can be well approximated by

(6)

(When the relationship between τ 2 and σ 2 is less
extreme, it is better to assign σ 2 a non-informative prior
distribution and obtain the posterior distribution of µ by
Markov Chain Monte Carlo methods. This will be
shown in an example).

Thus the approximate posterior mean and posterior
standard deviation arising from Eq. (4) are in fact the
quantities recommended for estimation by the Guide.
In the next section, an example of a Key Comparison
experiment is described in order to motivate the
proposed modeling and analysis.

3. Example of a Key Comparison
Experiments,Vibration
Acceleration (CCAUV.V-K1)

The aim of this experiment in the area of vibration
and shock measurement was to compare measurements
of sinusoidal linear accelerations in the frequency range
from 40 Hz to 5 kHz. During the period from January
2000 to June 2001, 12 national metrology institutes
used two different accelerometers, one of single-ended
design and one of back-to-back design, to measure
charge sensitivity at different frequencies. The charge
sensitivity was given in pico coulomb per meters per
second squared [pC/(m/s2)]. All laboratories followed
the same measurement protocol, controlling tempera-
ture and relative humidity and other external variables
which could affect the measurements. The German
institute Physikalisch Technische Bundesanstalt (PTB)
was the pilot laboratory, responsible for checking the
long term stability of the accelerometers. These were
hand-carried from the pilot laboratory to the participat-
ing institutes in a closed box by representatives of the
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various institutes. The data from the Key Comparison
was published in Report on Key Comparison
CCAUV.V-K1 [13] and is now available for further
study. This is a Class 1 Key Comparison with a travel-
ing artifact, which can be considered as having a single
measurand.

A subset of this data, charge sensitivity for the
single-ended accelerometer at 40 Hz , is given here
in Table 1. The table contains the mean values (yi),
the repeatability component of the uncertainty (si)
and the Type B evaluated uncertainties (τ i) for this
measurement.

The mean measurements are averages over five
measurements for all but three laboratories. Laboratory
one took nine measurements, laboratory eight took
three measurements, and laboratory nine took four
measurements. The si are the sample standard devia-
tions of the means. Each laboratory calculated their
uncertainty values by the usual error propagation tech-
niques, see Ref. [5], and included terms such as uncer-
tainty from possible voltage disturbances, phase noise,
uncertainty in the vibration frequency measurement
and others. All of the possible sources of uncertainty
that were to be considered are described in the publica-
tion [14]. Each laboratory assessed their Type B uncer-
tainty independently of the other laboratories and with-
out knowledge of the other laboratories’ measurements. 

4. Two Models for Key Comparison Data
4.1 Multiple Means Model

A Key Comparison experiment is a multi-laboratory
study. If we treat all laboratories data totally independ-
ently from each other, that is, if we assume that there
are no relationships between the measurands or the
uncertainties of the various laboratories, we can extend 

the statistical model given in Eq. (4) as follows.
For i = 1,…, k, where k is the number of laboratories,
we have

(7)

The posterior distributions of the µ i can be approximat-
ed by

(8)

and so the standard uncertainty of each laboratory is
approximately the Guide recommended quantity.

4.2 Single Mean Experiment
Suppose now that there is a common measurand as

would be true in all Class 2 Key Comparisons and
in most Class 1 Key Comparisons. Equation (7) can be
modified to reflect this fact:

(9)

The notation U(0, c) represents a rectangular
(Uniform) distribution on the interval (0, c), where
c is a constant. The prior distributions on the µ i are
now hierarchical, the common mean µ being the
measurand of the entire experiment. Note that γ 2
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Table 1. Charge sensitivity and the associated uncertainties

Laboratory number yi in pC/(m/s2) si in  105 pC/(m/s2) τ i in 105 pC/(m/s2)

1 0.12901 3.6 19
2 0.12914 5.5 73
3 0.12924 8.9 57
4 0.12874 6.1 66
5 0.12960 55.9 85
6 0.12890 3.9 72
7 0.12875 2.4 43
8 0.12870 9.6 39
9 0.12853 9.9 53

10 0.12830 4.4 54
11 0.12950 5.5 43
12 0.12877 11.6 132
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represents variability due to systematic laboratory
effects. When a prior distribution for it is specified, γ 2

can be estimated from the combined data of the partic-
ipating laboratories. Recall that for each individual lab-
oratory, the contribution of such systematic laboratory
effects to their uncertainty is not estimable by their own
data and so is evaluated by Type B methods and is part
of τ i. For example, in the CCAUV.V-K1 key compari-
son, the uncertainty in the vibration frequency meas-
urement is of this type. So is essentially any uncertain-
ty attributed to the individual laboratory’s technique.
Thus the uncertainty estimate of µ based on Eq. (9) is
somewhat conservative as it is impossible, without a
complete list of all Type B evaluated uncertainties from
each participant, to separate out the effects which are
estimable from the pooled data and the effects which
are not. When the σ 2

i are considered unknown and are
given prior distributions, analysis based on Eq. (9) must
be done numerically as closed form solutions are not
available. Markov Chain Monte Carlo methods can
readily be used, see Ref. [15] for sample computer
programs.

A special case of Eq. (9) is when γ 2 = 0, that is, when
all laboratories are assumed to be truly measuring the
same quantity. In such a case, allowing ω2 → ∞ and fol-
lowing Ref. [16], it can be shown that approximately,
the posterior distribution of µ is normal with mean µ p

and standard deviation ωp where

(10)

(11)

5. Analysis
5.1 Single Measurand Experiment

Both Eqs. (7) and (9) can be used to construct a
KCRV and its uncertainty for a single measurand exper-
iment.

First, consider using Eq. (9). In this case, the meaning
of the KCRV is clear and so is its estimation. It is plain-
ly an estimate of the common measurand µ and can be
provided by the mean of the posterior distribution. The
uncertainty is the posterior standard deviation of µ .
If γ 2 is set to 0, the solution [Eq.(10)] is the most
commonly used KCRV estimate described in Ref. [6].

However, unlike in that publication, here it is derived
based on a Bayesian model. The underlying assumption
of a common laboratory mean has been questioned in
the literature, see for example Ref. [17]. Equation (9)
with a prior distribution on γ 2 provides a sensible alter-
native, one that allows for systematic laboratory differ-
ences, provides a more conservative estimate of the
uncertainty of the KCRV and also allows for a degree
of validation of the stated uncertainties. The publica-
tion [17] takes another approach and directly models
the differences between the measurand µ and the µ i.
The resulting KCRV is somewhat related to that
described in Sec.5.2.

It is possible that the participants of the Key
Comparison may not wish to allow the mathematical
model to pool their data automatically, but want to
determine the form of the KCRV more directly. An
alternate approach then would be to use the multiple
means Eq. (7) and to construct a KCRV based on it.
This requires a synthesis of the probability distributions
of the µ i into a single distribution for µ . The literature
on such methods is rich and has been reviewed in Refs.
[18] and [19]. An approach that is sensible for the cur-
rent application is the Supra-Bayesian technique given
in Ref. [20]. This can be described as follows:

A single person with vague prior knowledge of a
parameter µ consults k experts who provide the means
(in our notation yi) and standard deviations (in our

notation ) of their probability distributions for

µ . The person then combines the k experts’ distribu-
tions into a single probability distribution. He does this
by first specifying a normal likelihood function to
express his opinion about the experts’ knowledge and
then using Bayes Theorem. Namely he specifies that
the distribution

(12)

is multivariate normal with means α i + β iµ , standard

deviations and correlations ρji for i = 1,…,k.

In this way he can express his beliefs about the possible
biases (in terms of the αi and βi) of the experts, about
their precision (in terms of κ i), and to what extent their
assessments are correlated or not. In the case of no
correlation between the laboratories, the resulting
posterior distribution for µ is normal with mean

(13)
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and variance

(14)

Note that when the α i are set to 0, and the β i and κ i are
set equal to one, these expressions become Eqs. (10)
and (11). Note that this is again the weighted mean
estimator as described in [6]. The most frequent criti-
cism of this analysis is based on the belief that the val-
ues of the Type B uncertainties cannot be considered as
well determined quantities but rather only as estimates
of the underlying variability. Taking the κ i not as con-
stants but giving them a probability distribution can
model this fact.

For simplicity, it will be assumed here that the
laboratories’ results are independent and thus that the ρi

are equal to 0. This is generally a reasonable assump-
tion in Key Comparisons but can be relaxed if neces-
sary. Reference [20] shows that without loss of gener-
ality, the α i may be set to 0 and the β i to 1, when the
following probability model for the κ i is employed:

(15)

Note that and the coefficient
of variation of κ i is (ν/2 – 2)–1/2. The values of ci and the
degrees of freedom ν i therefore specify the location and
the spread of the distribution of κ i.  The selection of the
values can be aided by noting that κ i is approximately
normal with mean log ci and variance (2ν i)–1, which
further implies that approximately, ai

–1 ci < κi < aici, for
ai such that Further discussion of these
relationships appears in Ref. [20] and also in Ref. [21].

Combining the likelihood function [Eq. (12)] and the
prior distribution [Eq. (15)] via Bayes Theorem for a
single laboratory i results in

(16)

having a student tυi distribution. Because of the inde-
pendence of the laboratories, using Bayes Theorem
with Eqs. (12) and (15) for all k laboratories results in
a posterior distribution of µ which is a product of the
tυi (i = l,…, k) distributions. An interesting property of
this distribution is that it can be multi-modal when
there is strong disagreement among the laboratories. 

This model, in a more general context, is also discussed
in some detail in Ref. [22] and further generalized by
Ref. [23].

The KCRV can be taken to be the mean or possibly
the median of this distribution. The uncertainty is the
standard deviation of this distribution. Such quantities
cannot be obtained in closed form but can easily be
computed using standard Markov Chain Monte Carlo
methods (Ref. [15]). Interestingly, the same distribution
was derived using a different model and different moti-
vation by [24] for the problem of combining data which
appear to be in mutual disagreement.

Both approaches, that is KCRV estimation based
on Eq. (9) or the Supra-Bayesian KCRV based on
Eq. (7), are reasonable. Arguably, the Supra-Bayesian
method introduces fewer assumptions, and allows a
more direct modeling of possible inaccuracies in the
individual Type B evaluations. On the other hand, the
straightforward interpretation of Eq. (9) and the
possibility of data-based estimation of the effects of the
systematic laboratory effects makes this approach
appealing as well. Analysis of data from CCAUV.V-K1
key comparison in Sec. 6 will illustrate the two
approaches.

5.2 Multiple Measurand Experiments
In some Class 1 experiments there are clearly

defined multiple measurands. In such a case, Eq. (7)
would be used. The question then is again how to esti-
mate the KCRV since it has no natural interpretation.
The Supra-Bayesian solution given in Sec. 5.1 is not
applicable here since there is no common measurand.
One possible solution is the following method, based
on the so-called linear opinion pool, which dates back
to Laplace. In this method k probability distributions
pi ( ) are combined as

(17)

where the weights wi add up to one. In the present
application, the k laboratories posterior distributions for
µ i could be combined into the mixture distribution of a
new random variable µ, namely

(18)

This is using the Gaussian density for pi. In most
cases, the weights wi would be taken to be 1/k repre-
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senting a view that the laboratories’ data are of equal
quality. The mean of this distribution, that is, the
average of the k laboratories measurements would
be taken as the KCRV. The standard deviation of this
distribution

(19)

being the standard uncertainty of the KCRV. The linear
opinion pool is an easily understood and easily per-
formed method. It is intuitively pleasing because the
weights can be thought to represent the relative quality
of the laboratories’ results. The estimator, with a
frequentist interpretation, was used in Refs. [3] and
[25]. Its main appeal in the Bayesian context, is that
u(y–) can be thought to represent the total variability in
the population of measurands of the Key Comparison.
This can be viewed as the true measure of uncertainty
in such a Key Comparison, because of the assumed
equality of the laboratories in terms of their compe-
tence.

6. Example: Analysis of CCAUV.V-K1

The Key Comparison in Vibration Acceleration is
an interesting example of Class 1 Key Comparison
with a traveling artifact. The data is given in Sect. 3.1.
Table 1 summarizes the results of the analysis. Using
Eq. (9), various results can be obtained depending
on the value of γ 2. In Table 2, the results for γ = 0
are labeled “common mean model.” The results using
a uniform prior distribution on γ are labeled “lab-
effect model.” The third column contains the Supra
Bayes estimate, one with ci = 1.0 and ai = 2.0, that is,
0.5 < κ i < 2.0, (i = 1,…,12). This choice of ci and ai

gives a reasonable range of possible values for the
standard uncertainties in this particular experiment as
the declared standard uncertainties based on Table 1
range from a minimum of about one third of the
average standard uncertainty to a maximum of about
twice the average. The fourth column contains
the results based on the linear pool estimator. In this
particular Key Comparison, the separate measurands
model is possibly too extreme as there truly was a
single measurand. However, the separate measurands
model can be thought of as a limiting case of a
systematic lab effects model and as such can be used
to obtain an upper bound on the uncertainty of the
KCRV.

It is clear from Table 2 that even though the values of
the Bayesian KCRV estimates under the various
assumptions are very similar, their uncertainties are
not. Thus, it is clearly important to examine the
assumptions underlying the various analyses and make
sure that they are reasonable. Equation (9), without the
restriction on γ, quite objectively estimates the under-
lying variability due to systematic lab effects. It allows
for the uncertainty to be as low as that given in Eq.(11),
when the data supports it. In this case, the data clearly
indicates that the uncertainty is larger. The posterior
mean of γ is 1.9421E-4 with posterior standard devia-
tion of 1.5838E-4. This gives a 95 % Highest Posterior
Density Interval (HPD) of (8.2604E-6, 5.9033E-4).
This is the shortest interval of possible values for γ
which has probability of 0.95. For comparison, the
individual laboratories’ Type B evaluated uncertainties
ranged from 1.8974E-4 to 1.3153E-3. Note that these
included terms based on random laboratory effects
(estimated by γ) as well as terms based on other factors.
Thus on the whole, the stated Type B evaluated uncer-
tainties are reasonable, and the lab-effects-model
KCRV would make a good choice.

The published analysis of CCAUV.V-K1 used
Eqs. (10) and (11) for the KCRV and its uncertainty.
The analysis (referred to as the common mean model
above) was described as “correctly reflecting the
declared uncertainties of the individual laboratories.”
There is a discussion in the report, from a frequentist
perspective, of statistical issues concerning the under-
lying assumptions of this analysis. Because of concerns
with the validity of these assumptions, other frequentist
estimates of the KCRV, including the average y–, the
median of the yi, and a Maximum Likelihood Estimator
(Ref. [23]) were computed. The report concluded that
the values of these estimators were similar enough to
justify the use of the common mean model for the
KCRV in this key comparison. The report did not
explicitly show the uncertainties associated with the
various estimators.
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Table 2. Comparison of KCRV estimates

Common Lab-effects Supra- Linear-
mean model model Bayes Pool
pC/(m/s2) pC/(m/s2) pC/(m/s2) pC/(m/s2)

KCRV 0.12892 0.12894 0.12894 0.12893

Uncertainty 0.000128 0.000167 0.000253 0.000791



7. Conclusions

Key Comparison experiments, performed in various
sub-disciplines of physics and chemistry, pose numer-
ous challenges to the analyst. Most importantly, Type B
evaluated uncertainty must be included in the statistical
model in a meaningful way, one that satisfies both the
scientist and the statistician. Further, the scientific
objectives of the experiment must be reflected in the
statistical summaries and the results must be compliant
with the Guide to the Expression of Uncertainty in
Measurement. It is shown in this paper, that the
Bayesian paradigm allows flexible modeling of Type B
evaluated uncertainty and that it can produce estimates
that are satisfactory to the needs of the scientists.
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